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Glauber critical dynamics: Exact solution of the kinetic Gaussian model
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In this paper, we have exactly solved Glauber’s critical dynamics of the Gaussian model in three dimensions.
Of course, it is much easier to apply in the low-dimensional case. The key steps are that we generalize the spin
change mechanism from Glauber’s single-spin flipping to single-spin transition and give a normalized version
of the transition probability. We have also investigated the dynamical critical exponent and found surprisingly
that the dynamical critical exponent is highly universal; that is, for one, two, and three dimensions they have
the same value independent of spatial dimensionality in contrast to &tafiglibrium) critical exponents.
[S1063-651%99)09902-X

PACS numbgs): 64.60.Ht, 75.10.Hk

I. INTRODUCTION dimensional(1D, 2D, and 3D kinetic Gaussian models.
This paper is organized as follows. In Sec. Il, a single-

Irreversible dynamic systems exhibit complicated and in-spin transiting critical dynamics that suits arbitrary-spin sys-
teresting nonequilibrium phenomena near the critical pointtems is presented. As an application, the Gaussian model is
The study of nonequilibrium statistical mechanics is muchtreated in Sec. Ill. We not only obtain the exact solutions of
more difficult than equilibrium state due to the complexity. 1D, 2D, and 3D kinetic Gaussian models, but also find that
However, the interesting dynamic critical behaviors havethe dynamic critical exponent is highly universal. Finally,
been attracting a large number of researchers to work hargec. IV is devoted to the conclusion.
for many years.

Up to now, there is no general theory based on first prin-
ciples to describe the dynamic problems. However, great Il. FORMALIZATION
progress has been made since the pioneering work completed

by Glauber1] and Kawasakf2]. According to their theory, For an irreversible dynamic system subjected to the time-

the time evolving of the order parameters is described b ependent pe_-rturbation, once the perturbation_ is. remaved,
Markov processes with the Glauber single-spin flipping he system will very slowly approach the equilibrium state

mechanism or Kawasaki exchange mechanism between tv\;e)ecause of the large-scale fluctuation near the critical point,

spins. Since then much attention has been paid to the study ich is Wh_at we call the CI’I'FICEU _slowmg o_Iqwn pheno_m-
&hon. We will attempt to explain using the critical dynamics,

of critical dynamics. The research so far has been extend . . ) )
why the short-range interactions lead to long-time relaxation.

from the kinetic Ising model to the kinetic Potts model andD h lexity there h b K led
from integer to fractional dimensions, in which many ap- ue tot € comp e_xnyt ere have been, to_our nowledge, no
microscopic theories based on first principles so far; thus a

proximate methods such as Monte Carlo simulation, high-"" . . L
temperature series expansianexpansion, the bond-moving suitable theoretical model will be quite important. As already

renormalization-group method, etc. have been app”e&nen_tioned, both the Glauber dynamic_:s and Kawasa_ki dy-
[3-19] namics have proven to be successful in many dynamic sys-

fems.
In this section, we give a brief review of Glauber's dy-
namics. Of course, we will give some improvement so that it

solving the master equation is the determination of the tran b lied to arbit . " For clarit tart
sition probability. Usually the transition probability between can be applied to arbitrary-spin systéms. or clarity, we star
from the one-dimensional case, and then the formulation is

different states, i.e., different spin configurations of the sys- ¢ tend 1o tw d three di .
tem, is only determined in terms of the detailed balance con€aSy 10 extend 1o two and three dimensions. .
The 1D lattice-spin model we will discuss is a stochastic

dition. Since such a choice is not unique, some arbitrariness Th ) N fixed ticl ted :
remains. For removing the arbitrariness, at least in part, wghe. The spins ol fixed particles are represented as sto-
hastic functions of timer;(t), (j=1,...N), which can

suggest a normalized transition probability; this means th ¢ X . . .
in the unit time interval that the transition may occur or ma;;‘be taken as d|st;rete valué_d;screte—spm modbebr continu-,
ous values(continuous-spin modgl and made into transi-

not. We apply this point to the continuous sgi@aussia : " :
PPy P f n tions among these values. The transition, according to

system and obtain exact solutions of one-, two-, and three : X :
Glauber dynamics, can only change single-spin value each

time, such aSO'j(t)—M;‘j(t) because of the interacting

* Author to whom correspondence should be addressed. Addre&d the system with th? heat reservoir. The transition
correspondence to Department of Physics, Beijing Normal Univerprobability W, (o7j(t) — o7(t)) from configuration
sity, Beijing 100875, China. [o1(t),02(t), ..., oj(t), ...,on(t)] to  configuration

Now let us turn to the master equation, a basic equatio
for treating critical dynamics. As we know, the key step for
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[o1(1),05(t), - .. ,0y(1), ... ,on(D)], in general, depends (3) normalization,

on the momentary values of the neighboring spins as well as

on the influence of the heat bath. For this reason statistical Voj: > Wj(gjq&j)zl; (4
correlations exist between different spins. Therefore, it is p

necessary to deal with the entiXespin system as a unit. The
evolution of spin functions describing system form a Markov(4) detailed balance,
process oN discrete or continuous random variables with a

continuous time variable as argument. Vo o W,-((rj—n}j) _Pegloy, .0y, JON)
We introduce a probability distribution function 7y 95 Wj((}j—>0-j) P01, k0, 0N
p(oq, ...,0N,t), which denotes the probability of spin sys- (5)

tem being in the stateo(s, ... ,oy) at timet. Let W(o;

—a;) be the transition probability per unit time that thia ~ in which

spin transits from one valueJ to another possible valug,

while the others remain fixed. Then, on the supposition of p_ o= Zexq BH({o}], z=>, exp[ — BH({o})]
single-spin transition, we may write the time derivative of {o}

the functionP (o, ... ,on,t) as . A o
(o1 .1 where P is the equilibrium Boltzmann distribution func-

d R tion, Z is the partition function, and{({o}) is the system
ap({g},t):; > [—W(oy—a)p(a}) Hamiltonian.

i Although the spin transition probabilities are not deter-
mined uniquely by the above restriction conditions, there is

+W( 7= o)P{aizi}, UJ 0] @ less room within which to choose them. Furthermore, con-

This is a probability equation, in which the first term in the sidering the fact that the transition of the individual spin
right-hand side of Eq(1) denotes the decrease of the prob-depends merely on the momentary values of the neighboring
ability distribution functionP({c},t) per unit time due to the Spins as well as on the influence of the heat bath, we can
transition of the spin state from the initial value; (j assume that the transition probability fram to o; depends
=1,2,...N) to various possible final Va|ueg and the only on the heat Boltzmann factor of the neighboring spins,
second term denotes the increase of the probablllty distribu-€-,
tion function P({o},t) per unit time due to the transition of
the spin state from the various possible initial valgs(j Wi(o'i—u}i)ocex;{ BH, ( o 2 g'])
=1,2,...N) to final valueaJ We shall refer to Eq(l) as (ij)
the master equation since its solution would contain the most
complete description of the system available.

It is a most crucial step, obviously, that the transition 1
probability must be determined before the master equation W,(0i—0j) = —exp
can be solved. Then, how can we determine the transition Qi
probability? For this problem, Glauber’s theory leaves some
leeway. However, inappropriate selection will probably WhereZ _;;~ means that the summation fprs only related
make the problem difficult to solve. So, we hope to discoveito the neighboring values of By means of the normalized
a more definite expression to apply the Glauber’s theory tg¢ondition(4), the normalized facto®; can be determined as
arbitrary-spin systems. Now we consider it in terms of both
its mathematical and physical aspects. In mathematics, gen- Q._E ex;{ —BHi| o, <.E,> Uj) _

(6)

—,BHi(c}i,Z gj) ,

(ij)

erally speaking, the probability must be ergodic and positive o
definite, and can be normalized; in physics, we often request

that an equilibrium thermodynamic system satisfies the de©bviously, Q; is independent ofr; and is related to the
tailed balance condition. Based on these considerations, wemperature and neighboring spins.

)

can choose the spin transition probabiéy(o;— ;) to sat- Compared with Glauber’s expressiphl, Equation(6) is
isfy the following conditions in order to ensure that the sys-a@ normalized version of transition probability. As we know,
tem is in a thermodynamic equilibrium state. the constanta in Glauber's expression is a free constant

For the set & g) composed of a subs& and its dual determined by the time scale. Actually, our expression is
only a definite selection for constant by extra restriction

) - o conditions and physical considerations.
belonging toS, we have the following: Usually, we are interested in local magnetization and the
spin-pair correlation, they are defined as folloj$

subsetS in phase space, existing; belonging toS and z}j

(1) ergodicity,
Va0 W(oj—aj)#0; ) qk(t):<0k(t)>:{2‘} oP({o}1), 8
(2) positivity,

“ N = = ). 9
Vo5 Wias >0 . V(O =(o (Do (1)) %ako|P<{a} t) 9
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According to definitiong8) and(9) and the master equation ing to infinity, a probability of finding a given spin between
(1), and using the normalized conditidd), time-evolving oy andaoj,+dojj is assumed to be the Gaussian-type dis-

equations ofg,(t) and y,,(t) can be derivedsee Appendix tribution
Ham)do = A= % b ,
~ ~ Oiik)ATiik= "\ =—€eXp — z0;;
Z Uka(Uk*Uk))P({U},t), anth 27 2" ik

A):
o (10  Whereb is a distribution constant independent of tempera-
ture. Although it is an extension of the Ising model, the
) Gaussian model is quite different from the Ising model in

dojjk , (14)

d
g a(O="an+ 2

terms of the properties of the phase transition. In the equi-
librium case, on translational invariant lattices the Gaussian
model was exactly solvable, and later as a starting point to
P{ao},t). (11 study the unsolvable models it was also investigated with
mean field theory and the momentum-space renormalization-
_ . . . . .. group method21,22. Recently the Gaussian model on frac-
Similarly, time-evolving equation of equal-time multispin tal lattices was studied by Li and Yarig3]. However, the

o a|

d
Je D ==2ya(+ 2
{o}

Uk( E (}|W|(U|—><}|)

+O'|

Tk

2 CATka(UkHCATk)>

correlation functions can be further derived: critical dynamic problem of the continuous-spin model has
d never been investigated so far, to our knowledge.
a(,fil(t)giz(t). . 'Uin(t)> We now proceed to treat the isotropic kinetic Gaussian

model on the cube lattice. The system Hamiltonian and the
spin distribution probability are Eq$13) and (14), respec-
tively. In this case the spin transition probability can be ex-

n n pressed as
+3) {2 [( "
{o} | k=1 \j#k=1 !

. 1 -
Wijk(UiijUijk):Q—”k €ex kUijkE\N: (T tw,jk
ij

:_n<0i10‘i2.--0in>

X

] P({o}.b). 12

> ‘}ikWik(o'ik_’a'ik))

iy + 00 v wkt Tij k) |- (15

Equations(1), (4)—(7), and(10)—(12) are the basic formulas . ) )
of the single-spin transition-type critical dynamics, which Because the spin take continuous value, the summation for
suits one-dimensional arbitrary-spin systems. spin value turns into the integration
All of these formulas can be readily extended to spin sys- .
tems on square lattice and cubic lattice. The only corrections > HJ f(o)do; (16)
are changing subscriptinto ij andijk, respectively. o —o

. EXACT RESULTS then the normalized factd;; can be determined as

In this section, three examples of the application are [ - (o
given, including one-, two-, and three-dimensional kinetic Qijk= ﬂcd(’iik (Tijk)
Gaussian model.

Now we treat the kinetic Gaussian model. First of all we ~
will introduce Gaussian model, then we will exactly solve Xexy{ k‘Tiik%‘f (Titwj kT Tijrwkt Tijkrw)
the evolution of the local magnetization and equal-time spin-
pair correlation function, and we will obtain the dynamical k2 2
exponentz. Here, we will only give the solving process of = eXP[%{% (TiswjkT i j+wkt Oijk+w) ]

the three-dimensional case in detail.
The Gaussian model, proposed by T. H. Berlin and M. (17

Kac [20], at first in order to make an Ising model more L

tractable, is an continuous-spin model. Comparing it with thet"d the another useful combination formula can also be ob-

Ising model, besides having the same Hamiltonian fornf@ined:

(three-dimensional cake

N > i Wij(oijc— oijk)
T
_ﬁH:ki j%l % Tijk(Tiw,j kT Tij+wikT T krw) !
(13 :f_ aijWijk (aijk— aij) f (o) doji

whereX,, means summation over near neighbors, there are
two extensions: First, the spim;, can take any real value _

' =— Tirwiktoii + 0 . 18
between (-, + ). Second, to prevent all spins from tend- b% (Ticwjact 0wkt O w) (18
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Substituting Eq(18) into the following time-evolving equa-
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tions of the local magnetization and the equal-time spin-paig;; F1(A 1,2, A3, t)

correlation function,
d
aqijk(t) =—Qij(t)

+2>

{o}

2 UI]kWIJk(UIJk*}UI]k)) P({a}.1),

Tijk
(19
d
a'yijk;i'j’k’(t)
27|k]| ]’k’(t)+2 UIJK( E 0'| ik Wirjrkr
gi'j'k’
X(Ui'j’k’_’(}i’j’k'))
+(Ti'j'k'<z (}ijkWijk(Uijk_’(}ijk)> P({o},t),
Tijk
(20)
we get
d k
&Qijk(t):_Qijk(t)Jr 5%: (i rw,j kT i +wkt dijcrw)s
(21
d
&')’ijk;i’j’k’(t)
k
_27ijk;i’j’k’(t)+52 [Yijk:ir +w,jr ke (1)
w
+ Yiiksir i +wk (O Yijkcir i ke +w(t)
+ Yitwjkijk (D F Yijrwikirjree ()
+Yijkrwije (D] (22

In order to solve Egs(21) and (22) in the nearest-
neighbor interaction casevE =1), we introduce two gen-
erating functiong1]:

o0

F1(>\1.7\2,)\3,t)=i,j,k227w )\il)\jz)\éqijk(t), (23
and
Fo(A1,- - Ag,1)
:i j k_i,on,ck/_ )\il)‘jZ)\;)\izll)\jS,}\lél'yijk;i’j’k'(t)§ (24

then Egs.(21) and (22) turn into the following equations
with resect toF; andF,, respectively:

PRE 59
Kk 3
= —1+ B|=2]_ ()\l—"—)\rl) Fl()\la)\Zv)\Svt)v (25)
d
aFZ()\lv' . 1)\61t)
K.
—2+ 52 (NEATD Fahg, o del). (26)
=
Solving Egs.(25) and(26), we get
Fl()\lv)\Zy)\E,;t)
3
:Fl()\la)\Z!)\:’ﬂo)eteX;{ 2 )\ +)\ :| (27)

FZ()\lv e 1)\61t)

6

kE N+ l)t} (28)

:FZ()\ll' ° 1)\6!O)e72t ex’{

In terms of a generating function of the Bessel functions of

imaginary argument,

ex<>\+>\*1)/2: 2 A1,(X),

v=—®

(29

we obtain immediately the following exact solutions:

©

>

m,l=—w
2k 2k 2k
X|in(Ft)|jm(Ft)|k|<Ft), (30

o0

-2t E

nml:n",m’,1'=

B 2

2k 2k 2k
Xlir,n/ Ft Ijr,mr Ft Ikr,|r Ft 5

(31)

qijk(t):e_tn Tnmi(0)

Yijk;i’ J'k'(t) € ’)’nml;n’m’l'(o)

— oo

whereq,m((0) and ynmin'm1-(0), respectively, correspond
to their initial values.

By using the asymptotic expansion expression of the first-

kind imaginary argument Bessel function,
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S (D))
I”(X)_\/zwx n§=:o (2x)"

—X+(v+12)mi =

e (v,n)

+ 1
27X n=0 (2x)"

(—ml2< argx<3w/2), |x|—®, (32

where

I'(3+v+n)
(v,N)=——"7""",
nl(3+v—n)

we can obtain the long-time asymptotic behavior of the local

magnetization,

o]

2k —-3/2 1
N Y —(1—-6k/b)t T atr
Qijk () bt) e n,m;ﬂ Anmi(0) T
(33
__ 34
T 1-6kib’ (34)

GLAUBER CRITICAL DYNAMICS: EXACT SOLUTION ...

1555

[

')’mn;m'n’(UZEi2t E

i’ =

2k 2k 2k
Xln*]— Ft Im’*i’ Ft In/,j/ Ft

2k
Yij:irj (0) e e

(43
1

= 1-aKkib’ “h

z=2. (45)

IV. CONCLUSION

In this paper, we have suggested a normalized transition
probability to solve the time evolution equations of the local
magnetization and spin-pair correlation function. Our treat-
ment can in part remove the arbitrariness in Glauber’s dy-
namical theory, and makes it possible to exactly solve the
time evolution equation.

Based on our treatment, we have exactly solved the ki-
netic Gaussian model, and given the details for solving the
three-dimensional case. We have found, surprisingly, that the

where 7 is the relaxation time of the system. We know that dynamical critical exponents have the same value indepen-

the critical point of the Gaussian model kg=J/k;T,

dent of spatial dimension, which shows that the dynamical

—b/2d, whered is the spatial dimension, and the correlation P€havior has superuniversality, in contrast with static behav-

length critical exponent ig=1/2 [22]. So, by means of the

following dynamical scaling hypotheses
E~|T-Tq77, (35

=&, (36)

ior. In fact, in the equilibrium phase transition the critical
exponents are strongly dependent on dimensionality.
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model can be obtained,

z=2. (37)

APPENDIX: PROOFS OF EQS. (10—(12)

According to definition(8) and using the master equation

With the same treatment, we can easily solve the one- and), we have
two-dimensional kinetic Gaussian models. Ignoring the pro-

cess of solution, we give only the following exact results:

d

(1) 1D case,

- 2k

qk(t):e_tm;w qm(O)Ik_m(Ft), (38)
- 2k 2k
')’kl(t):e_mn Z_x Ynm(0)1 kn(?t) ||m(Ft) ,
(39
1

= 1-2kib’ (40
z=2. (41)

(2) 2D case,

- 2k 2k
Qnm(t):e7t E qk,l(o)lnk(Ft)lml(Ft)a (42
K=

d
an(t) = a{% aP({a},t)

:{2} 2| 2 [— owi(—07) P({o},t)
+UkWi((}i_’0'i)P({0'j¢i}va'i )]

= o X E [—wi(oi—ay)P({c},1)

o idFo

+Wi(gi— )P0 4i},01,0)]

+{ } E [~ oWl o— o) P({a},t)
ok

+ o Wi(0— ) P 21 o D)1 (A1)

Looking at the first termi(*k) following the last equality
sign of Eq.(Al),
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(i#k) term =2 o > > [—wi(o—07)
{o} ii#k) o

XP({a},t)+wi(ai—a))P({oj4i},01,1)]

> (Tk_z (_E w;(ai— o) P({a},t)

{‘Tj#i} i(i#k) g ,0j

+ 2 wi(gi—a)P{aj.},0 ,t)), (A2)

g ,0j

it is easy to see that this term equals to zero, as long s

exchanged withr; before summing foio; and o;. So the
surplus term of Eq(A1) is only the last termi(=k):

d d
gt =ge2 oPUah

=> E [— oW (ox— o P({a},b)

{o} [

+ o Wi(0— o) P({0 41}, 1) ]

JIAN-YANG ZHU AND Z.R. YANG
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=—{E} ak(z wkww&k)) P{o},t)

Tk

>

o1 OOk O

aWi(ox— ) P} 2ih, 0 1)

=—> aP({ah 1)
=

+ 2

01 OOk ON

oWy (o ) Py 2k o b)

= —Qk(t)'*‘{E} > f}ka(UkH(}k)) P({o},1),

in which the normalized condition and the method of ex-

change ofo; for o were used. Hitherto, Eq10) has been
proven exactly. As for the proof of the Eq4.1) and(12), it

is easily accessible via the same method and thus does not

require further proof.
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