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Glauber critical dynamics: Exact solution of the kinetic Gaussian model

Jian-Yang Zhu2,3* and Z. R. Yang1,2

1CCAST (World Laboratory), Box 8730, Beijing 100080, China
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In this paper, we have exactly solved Glauber’s critical dynamics of the Gaussian model in three dimensions.
Of course, it is much easier to apply in the low-dimensional case. The key steps are that we generalize the spin
change mechanism from Glauber’s single-spin flipping to single-spin transition and give a normalized version
of the transition probability. We have also investigated the dynamical critical exponent and found surprisingly
that the dynamical critical exponent is highly universal; that is, for one, two, and three dimensions they have
the same value independent of spatial dimensionality in contrast to static~equilibrium! critical exponents.
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PACS number~s!: 64.60.Ht, 75.10.Hk
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I. INTRODUCTION

Irreversible dynamic systems exhibit complicated and
teresting nonequilibrium phenomena near the critical po
The study of nonequilibrium statistical mechanics is mu
more difficult than equilibrium state due to the complexi
However, the interesting dynamic critical behaviors ha
been attracting a large number of researchers to work h
for many years.

Up to now, there is no general theory based on first p
ciples to describe the dynamic problems. However, gr
progress has been made since the pioneering work comp
by Glauber@1# and Kawasaki@2#. According to their theory,
the time evolving of the order parameters is described
Markov processes with the Glauber single-spin flippi
mechanism or Kawasaki exchange mechanism between
spins. Since then much attention has been paid to the s
of critical dynamics. The research so far has been exten
from the kinetic Ising model to the kinetic Potts model a
from integer to fractional dimensions, in which many a
proximate methods such as Monte Carlo simulation, hi
temperature series expansion,e expansion, the bond-movin
renormalization-group method, etc. have been app
@3–19#.

Now let us turn to the master equation, a basic equa
for treating critical dynamics. As we know, the key step f
solving the master equation is the determination of the tr
sition probability. Usually the transition probability betwee
different states, i.e., different spin configurations of the s
tem, is only determined in terms of the detailed balance c
dition. Since such a choice is not unique, some arbitrarin
remains. For removing the arbitrariness, at least in part,
suggest a normalized transition probability; this means
in the unit time interval that the transition may occur or m
not. We apply this point to the continuous spin~Gaussian!
system and obtain exact solutions of one-, two-, and th

*Author to whom correspondence should be addressed. Add
correspondence to Department of Physics, Beijing Normal Univ
sity, Beijing 100875, China.
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dimensional~1D, 2D, and 3D! kinetic Gaussian models.
This paper is organized as follows. In Sec. II, a sing

spin transiting critical dynamics that suits arbitrary-spin s
tems is presented. As an application, the Gaussian mod
treated in Sec. III. We not only obtain the exact solutions
1D, 2D, and 3D kinetic Gaussian models, but also find t
the dynamic critical exponent is highly universal. Finall
Sec. IV is devoted to the conclusion.

II. FORMALIZATION

For an irreversible dynamic system subjected to the tim
dependent perturbation, once the perturbation is remo
the system will very slowly approach the equilibrium sta
because of the large-scale fluctuation near the critical po
which is what we call the critical slowing down phenom
enon. We will attempt to explain using the critical dynamic
why the short-range interactions lead to long-time relaxati
Due to the complexity there have been, to our knowledge
microscopic theories based on first principles so far; thu
suitable theoretical model will be quite important. As alrea
mentioned, both the Glauber dynamics and Kawasaki
namics have proven to be successful in many dynamic
tems.

In this section, we give a brief review of Glauber’s d
namics. Of course, we will give some improvement so tha
can be applied to arbitrary-spin systems. For clarity, we s
from the one-dimensional case, and then the formulatio
easy to extend to two and three dimensions.

The 1D lattice-spin model we will discuss is a stochas
one. The spins ofN fixed particles are represented as s
chastic functions of times j (t), ( j 51, . . . ,N), which can
be taken as discrete values~discrete-spin model! or continu-
ous values~continuous-spin model!, and made into transi-
tions among these values. The transition, according
Glauber dynamics, can only change single-spin value e
time, such ass j (t)→ŝ j (t) because of the interactin
of the system with the heat reservoir. The transiti
probability Wj„s j (t)→ŝ j (t)… from configuration
@s1(t),s2(t), . . . , s j (t), . . . ,sN(t)] to configuration

ss
r-
1551 ©1999 The American Physical Society
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@s1(t),s2(t), . . . ,ŝ j (t), . . . ,sN(t)#, in general, depend
on the momentary values of the neighboring spins as we
on the influence of the heat bath. For this reason statis
correlations exist between different spins. Therefore, it
necessary to deal with the entireN-spin system as a unit. Th
evolution of spin functions describing system form a Mark
process ofN discrete or continuous random variables with
continuous time variable as argument.

We introduce a probability distribution functio
p(s1 , . . . ,sN ,t), which denotes the probability of spin sy
tem being in the state (s1 , . . . ,sN) at time t. Let Wj (s j

→ŝ j ) be the transition probability per unit time that thej th
spin transits from one values j to another possible valueŝ j ,
while the others remain fixed. Then, on the supposition
single-spin transition, we may write the time derivative
the functionP(s1 , . . . ,sN ,t) as

d

dt
P~$s%,t !5(

j
(
ŝ j

@2Wj~s j→ŝ j !p~$s%,t !

1Wj~ ŝ j→s j !p~$s iÞ j%,ŝ j ,t !#. ~1!

This is a probability equation, in which the first term in th
right-hand side of Eq.~1! denotes the decrease of the pro
ability distribution functionP($s%,t) per unit time due to the
transition of the spin state from the initial values j ,( j

51,2, . . . ,N) to various possible final valuesŝ j , and the
second term denotes the increase of the probability distr
tion functionP($s%,t) per unit time due to the transition o
the spin state from the various possible initial valuesŝ j ,( j
51,2, . . . ,N) to final values j . We shall refer to Eq.~1! as
the master equation since its solution would contain the m
complete description of the system available.

It is a most crucial step, obviously, that the transiti
probability must be determined before the master equa
can be solved. Then, how can we determine the transi
probability? For this problem, Glauber’s theory leaves so
leeway. However, inappropriate selection will probab
make the problem difficult to solve. So, we hope to disco
a more definite expression to apply the Glauber’s theory
arbitrary-spin systems. Now we consider it in terms of bo
its mathematical and physical aspects. In mathematics,
erally speaking, the probability must be ergodic and posit
definite, and can be normalized; in physics, we often requ
that an equilibrium thermodynamic system satisfies the
tailed balance condition. Based on these considerations
can choose the spin transition probabilityWj (s j→ŝ j ) to sat-
isfy the following conditions in order to ensure that the sy
tem is in a thermodynamic equilibrium state.

For the set (S,Ŝ) composed of a subsetS and its dual
subsetŜ in phase space, existings j belonging toS and ŝ j

belonging toŜ, we have the following:

~1! ergodicity,

;s j ,ŝ j : Wj~s j→ŝ j !Þ0; ~2!

~2! positivity,

;s j ,ŝ j : Wj~s j→ŝ j !>0; ~3!
s
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~3! normalization,

;s j : (
ŝ j

Wj~s j→ŝ j !51; ~4!

~4! detailed balance,

;s j ,ŝ j :
Wj~s j→ŝ j !

Wj~ ŝ j→s j !
5

Peq~s1 , . . . ,ŝ j , . . . ,sN!

Peq~s1 , . . . ,s j , . . . ,sN!
,

~5!

in which

Peq5
1

Z
exp@2bH~$s%!#, Z5(

$s%
exp@2bH~$s%!#,

where Peq is the equilibrium Boltzmann distribution func
tion, Z is the partition function, andH($s%) is the system
Hamiltonian.

Although the spin transition probabilities are not dete
mined uniquely by the above restriction conditions, there
less room within which to choose them. Furthermore, c
sidering the fact that the transition of the individual sp
depends merely on the momentary values of the neighbo
spins as well as on the influence of the heat bath, we
assume that the transition probability froms j to ŝ j depends
only on the heat Boltzmann factor of the neighboring spi
i.e.,

Wi~s i→ŝ i !}expF2bHi S ŝ i ,(̂
i j &

s j D G ,
or

Wi~s i→ŝ i !5
1

Qi
expF2bHi S ŝ i ,(̂

i j &
s j D G , ~6!

where(, i j . means that the summation forj is only related
to the neighboring values ofi. By means of the normalized
condition~4!, the normalized factorQi can be determined a

Qi5(
ŝ i

expF2bHi S ŝ i ,(̂
i j &

s j D G . ~7!

Obviously, Qi is independent ofs i and is related to the
temperature and neighboring spins.

Compared with Glauber’s expression@1#, Equation~6! is
a normalized version of transition probability. As we kno
the constanta in Glauber’s expression is a free consta
determined by the time scale. Actually, our expression
only a definite selection for constanta by extra restriction
conditions and physical considerations.

Usually, we are interested in local magnetization and
spin-pair correlation, they are defined as follows@1#:

qk~ t !5^sk~ t !&5(
$s%

skP~$s%,t !, ~8!

gkl~ t !5^sk~ t !s l~ t !&5(
$s%

sks l P~$s%,t !. ~9!
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According to definitions~8! and~9! and the master equatio
~1!, and using the normalized condition~4!, time-evolving
equations ofqk(t) andgkl(t) can be derived~see Appendix
A!:

d

dt
qk~ t !52qk~ t !1(

$s%
S (

ŝk

ŝkWk~sk→ŝk!D P~$s%,t !,

~10!

d

dt
gkl~ t !522gkl~ t !1(

$s%
FskS (

ŝ l

ŝ lWl~s l→ŝ l !D
1s lS (

ŝk

ŝkWk~sk→ŝk!D GP~$s%,t !. ~11!

Similarly, time-evolving equation of equal-time multisp
correlation functions can be further derived:

d

dt
^s i 1

~ t !s i2~ t !•••s i n
~ t !&

52n^s i 1
s i 2•••

s i n
&

1(
$s% H (

k51

n F S )
j ~Þk!51

n

s i j D
3S (

ŝ i k

ŝ i k
Wi k

~s i k
→ŝ i k

!D G J P~$s%,t !. ~12!

Equations~1!, ~4!–~7!, and~10!–~12! are the basic formulas
of the single-spin transition-type critical dynamics, whi
suits one-dimensional arbitrary-spin systems.

All of these formulas can be readily extended to spin s
tems on square lattice and cubic lattice. The only correcti
are changing subscripti into i j and i jk , respectively.

III. EXACT RESULTS

In this section, three examples of the application
given, including one-, two-, and three-dimensional kine
Gaussian model.

Now we treat the kinetic Gaussian model. First of all w
will introduce Gaussian model, then we will exactly sol
the evolution of the local magnetization and equal-time sp
pair correlation function, and we will obtain the dynamic
exponentz. Here, we will only give the solving process o
the three-dimensional case in detail.

The Gaussian model, proposed by T. H. Berlin and
Kac @20#, at first in order to make an Ising model mo
tractable, is an continuous-spin model. Comparing it with
Ising model, besides having the same Hamiltonian fo
~three-dimensional case!,

2bH5k (
i , j ,k51

N

(
w

s i jk~s i 1w, j ,k1s i , j 1w,k1s i , j ,k1w!,

~13!

where(w means summation over near neighbors, there
two extensions: First, the spins i jk can take any real value
between (2`,1`). Second, to prevent all spins from ten
-
s

e

-
l

.

e

re

ing to infinity, a probability of finding a given spin betwee
s i jk ands i jk1ds i jk is assumed to be the Gaussian-type d
tribution

f ~s i jk !ds i jk5A b

2p
expF2

b

2
s i jk

2 Gds i jk , ~14!

whereb is a distribution constant independent of tempe
ture. Although it is an extension of the Ising model, t
Gaussian model is quite different from the Ising model
terms of the properties of the phase transition. In the eq
librium case, on translational invariant lattices the Gauss
model was exactly solvable, and later as a starting poin
study the unsolvable models it was also investigated w
mean field theory and the momentum-space renormalizat
group method@21,22#. Recently the Gaussian model on fra
tal lattices was studied by Li and Yang@23#. However, the
critical dynamic problem of the continuous-spin model h
never been investigated so far, to our knowledge.

We now proceed to treat the isotropic kinetic Gauss
model on the cube lattice. The system Hamiltonian and
spin distribution probability are Eqs.~13! and ~14!, respec-
tively. In this case the spin transition probability can be e
pressed as

Wi jk~s i jk→ŝ i jk !5
1

Qi jk
expFkŝ i jk(

w
~s i 1w, j ,k

1s i , j 1w,k1s i , j ,k1w!G . ~15!

Because the spin take continuous value, the summation
spin value turns into the integration

(
s
→E

2`

`

f ~s!ds; ~16!

then the normalized factorQi jk can be determined as

Qi jk5E
2`

`

dŝ i jk f ~ ŝ i jk !

3expFkŝ i jk(
w

~s i 1w, j ,k1s i , j 1w,k1s i , j ,k1w!G
5 expH k2

2bF(
w

~s i 1w, j ,k1s i , j 1w,k1s i , j ,k1w!G2J ,

~17!

and the another useful combination formula can also be
tained:

(
ŝ i jk

ŝ i jkWi jk~s i jk→ŝ i jk !

5E
2`

`

ŝ i jkWi jk~s i jk→ŝ i jk ! f ~ ŝ i jk !dŝ i jk

5
k

b(w ~s i 1w, j ,k1s i , j 1w,k1s i , j ,k1w!. ~18!
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Substituting Eq.~18! into the following time-evolving equa
tions of the local magnetization and the equal-time spin-p
correlation function,

d

dt
qi jk~ t !52qi jk~ t !

1(
$s%

S (
ŝ i jk

ŝ i jkwi jk~s i jk→ŝ i jk !D P~$s%,t !,

~19!

d

dt
g i jk ; i 8 j 8k8~ t !

522g ik j ; i 8 j 8k8~ t !1(
$s%

Fs i jkS (
ŝ i 8 j 8k8

ŝ i 8 j 8k8wi 8 j 8k8

3~s i 8 j 8k8→ŝ i 8 j 8k8!D
1s i 8 j 8k8S (

ŝ i jk

ŝ i jkwi jk~s i jk→ŝ i jk !D G P~$s%,t !,

~20!

we get

d

dt
qi jk~ t !52qi jk~ t !1

k

b(w ~qi 1w, j ,k1qi , j 1w,k1qi , j ,k1w!,

~21!

d

dt
g i jk ; i 8 j 8k8~ t !

522g i jk ; i 8 j 8k8~ t !1
k

b(w @g i jk ; i 81w, j 8,k8~ t !

1g i jk ; i 8, j 81w,k8~ t !1g i jk ; i 8, j 8,k81w~ t !

1g i 1w, j ,k; i 8 j 8k8~ t !1g i , j 1w,k; i 8 j 8k8~ t !

1g i , j ,k1w; i 8 j 8k8~ t !#. ~22!

In order to solve Eqs.~21! and ~22! in the nearest-
neighbor interaction case (w561), we introduce two gen-
erating functions@1#:

F1~l1 ,l2 ,l3 ,t !5 (
i , j ,k52`

`

l1
i l2

j l3
kqi jk~ t !, ~23!

and

F2~l1 ,•••,l6 ,t !

5 (
i , j ,k; i 8, j 8,k852`

`

l1
i l2

j l3
kl4

i 8l5
j 8l6

k8g i jk ; i 8 j 8k8~ t !; ~24!

then Eqs.~21! and ~22! turn into the following equations
with resect toF1 andF2 , respectively:
ir
d

dt
F1~l1 ,l2 ,l3 ,t !

5F211
k

b(i 51

3

~l i1l i
21!GF1~l1 ,l2 ,l3 ,t !, ~25!

d

dt
F2~l1 ,•••,l6 ,t !

5F221
k

b(i 51

6

~l i1l i
21!GF2~l1 , . . . ,l6 ,t !. ~26!

Solving Eqs.~25! and ~26!, we get

F1~l1 ,l2 ,l3 ,t !

5F1~l1 ,l2 ,l3,0!e2t expF k

b(i 51

3

~l i1l i
21!tG , ~27!

F2~l1 , . . . ,l6 ,t !

5F2~l1 ,•••,l6,0!e22t expF k

b(i 51

6

~l i1l i
21!tG . ~28!

In terms of a generating function of the Bessel functions
imaginary argument,

ex~l1l21!/25 (
v52`

`

lvI v~x!, ~29!

we obtain immediately the following exact solutions:

qi jk~ t !5e2t (
n,m,l 52`

`

qnml~0!

3I i 2nS 2k

b
t D I j 2mS 2k

b
t D I k2 l S 2k

b
t D , ~30!

g i jk ; i 8 j 8k8~ t !5e22t (
n,m,l ;n8, m8, l 852`

`

gnml;n8m8 l 8~0!

3I i 2nS 2k

b
t D I j 2mS 2k

b
t D I k2 l S 2k

b
t D

3I i 82n8S 2k

b
t D I j 82m8S 2k

b
t D I k82 l 8S 2k

b
t D ,

~31!

whereqnml(0) andgnml;n8m8 l 8(0), respectively, correspond
to their initial values.

By using the asymptotic expansion expression of the fi
kind imaginary argument Bessel function,
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I v~x!5
ex

A2px
(
n50

`
~2 !n~v,n!

~2x!n

1
e2x1~v11/2!p i

A2px
(
n50

`
~v,n!

~2x!n
,

~2p/2, argx,3p/2!, uxu→`, ~32!

where

~v,n!5
G~ 1

2 1v1n!

n!G~ 1
2 1v2n!

,

we can obtain the long-time asymptotic behavior of the lo
magnetization,

qi jk~ t !;S 2k

b
t D 23/2

e2~126k/b!t (
n,m,l 52`

`

qnml~0!;
1

t3/2
e2t/t,

~33!

t5
1

126k/b
, ~34!

wheret is the relaxation time of the system. We know th
the critical point of the Gaussian model iskc5J/kbTc
5b/2d, whered is the spatial dimension, and the correlati
length critical exponent isn51/2 @22#. So, by means of the
following dynamical scaling hypotheses

j;uT2Tcu2n, ~35!

t;jz, ~36!

the dynamic critical exponentz of the 3D kinetic Gaussian
model can be obtained,

z52. ~37!

With the same treatment, we can easily solve the one-
two-dimensional kinetic Gaussian models. Ignoring the p
cess of solution, we give only the following exact results

~1! 1D case,

qk~ t !5e2t (
m52`

`

qm~0!I k2mS 2k

b
t D , ~38!

gkl~ t !5e22t (
n,m52`

`

gnm~0!I k2nS 2k

b
t D I l 2mS 2k

b
t D ,

~39!

t5
1

122k/b
, ~40!

z52. ~41!

~2! 2D case,

qnm~ t !5e2t (
k,l 52`

`

qk,l~0!I n2kS 2k

b
t D I m2 l S 2k

b
t D , ~42!
l

t

nd
-

gmn;m8n8~ t !5e22t (
i , j ; i 8, j 852`

`

g i j ; i 8 j 8~0!I m2 i S 2k

b
t D

3I n2 j S 2k

b
t D I m82 i 8S 2k

b
t D I n82 j 8S 2k

b
t D

~43!

t5
1

124k/b
, ~44!

z52. ~45!

IV. CONCLUSION

In this paper, we have suggested a normalized transi
probability to solve the time evolution equations of the loc
magnetization and spin-pair correlation function. Our tre
ment can in part remove the arbitrariness in Glauber’s
namical theory, and makes it possible to exactly solve
time evolution equation.

Based on our treatment, we have exactly solved the
netic Gaussian model, and given the details for solving
three-dimensional case. We have found, surprisingly, that
dynamical critical exponents have the same value indep
dent of spatial dimension, which shows that the dynami
behavior has superuniversality, in contrast with static beh
ior. In fact, in the equilibrium phase transition the critic
exponents are strongly dependent on dimensionality.
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APPENDIX: PROOFS OF EQS. „10…–„12…

According to definition~8! and using the master equatio
~1!, we have

d

dt
qk~ t !5

d

dt($s%
skP~$s%,t !

5(
$s%

(
i

(
ŝ i

@2skwi~s i→ŝ i !P~$s%,t !

1skwi~ ŝ i→s i !P~$s j Þ i%,ŝ i ,t !#

5(
$s%

sk (
i ~ iÞk!

(
ŝ i

@2wi~s i→ŝ i !P~$s%,t !

1wi~ ŝ i→s i !P~$s j Þ i%,ŝ i ,t !#

1(
$s%

(
ŝk

@2skwk~sk→ŝk!P~$s%,t !

1skwk~ ŝk→sk!P~$s j Þk%,ŝk ,t !#. ~A1!

Looking at the first term (iÞk) following the last equality
sign of Eq.~A1!,



x-

not
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~ iÞk! term 5(
$s%

sk (
i ~ iÞk!

(
ŝ i

@2wi~s i→ŝ i !

3P~$s%,t !1wi~ ŝ i→s i !P~$s j Þ i%,ŝ i ,t !#

5 (
$s j Þ i %

sk (
i ~ iÞk!

S 2 (
s i ,ŝ i

wi~s i→ŝ i !P~$s%,t !

1 (
s i ,ŝ i

wi~ ŝ i→s i !P~$s j Þ i%,ŝ i ,t !D , ~A2!

it is easy to see that this term equals to zero, as long asŝ i is
exchanged withs i before summing forŝ i and s i . So the
surplus term of Eq.~A1! is only the last term (i 5k):

d

dt
qk~ t !5

d

dt($s%
skP~$s%,t !

5(
$s%

(
ŝk

@2skwk~sk→ŝk!P~$s%,t !

1skwk~ ŝk→sk!P~$s j Þk%,ŝk ,t !#
52(
$s%

skS (
ŝk

wk~sk→ŝk!D P~$s%,t !

1 (
s1•••skŝk•••sN

skwk~ ŝk→sk!P~$s j Þk%,ŝk ,t !

52(
$s%

skP~$s%,t !

1 (
s1•••ŝksk•••sN

ŝkwk~sk→ŝk!P~$s j Þk%,sk ,t !

52qk~ t !1(
$s%

S (
ŝk

ŝkwk~sk→ŝk!D P~$s%,t !,

in which the normalized condition and the method of e
change ofŝ i for s i were used. Hitherto, Eq.~10! has been
proven exactly. As for the proof of the Eqs.~11! and~12!, it
is easily accessible via the same method and thus does
require further proof.
n,
,
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